Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize.

Identifieur interne : 000192 ( Main/Exploration ); précédent : 000191; suivant : 000193

Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize.

Auteurs : Lishan Yao [République populaire de Chine] ; Yanmei Li [République populaire de Chine] ; Chuanyu Ma [République populaire de Chine] ; Lixiu Tong [République populaire de Chine] ; Feili Du [République populaire de Chine] ; Mingliang Xu [République populaire de Chine]

Source :

RBID : pubmed:31961059

Abstract

Fusarium ear rot, caused by Fusarium verticillioides, is a devastating fungal disease in maize that reduces yield and quality; moreover, F. verticillioides produces fumonisin mycotoxins, which pose serious threats to human and animal health. Here, we performed a genome-wide association study (GWAS) under three environmental conditions and identified 34 single-nucleotide polymorphisms (SNPs) that were significantly associated with Fusarium ear rot resistance. With reference to the maize B73 genome, 69 genes that overlapped with or were adjacent to the significant SNPs were identified as potential resistance genes to Fusarium ear rot. Comparing transcriptomes of the most resistant and most susceptible lines during the very early response to Fusarium ear rot, we detected many differentially expressed genes enriched for pathways related to plant immune responses, such as plant hormone signal transduction, phenylpropanoid biosynthesis, and cytochrome P450 metabolism. More than one-fourth of the potential resistance genes detected in the GWAS were differentially expressed in the transcriptome analysis, which allowed us to predict numbers of candidate genes for maize resistance to ear rot, including genes related to plant hormones, a MAP kinase, a PR5-like receptor kinase, and heat shock proteins. We propose that maize plants initiate early immune responses to Fusarium ear rot mainly by regulating the growth-defense balance and promoting biosynthesis of defense compounds.

DOI: 10.1111/jipb.12911
PubMed: 31961059


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize.</title>
<author>
<name sortKey="Yao, Lishan" sort="Yao, Lishan" uniqKey="Yao L" first="Lishan" last="Yao">Lishan Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yanmei" sort="Li, Yanmei" uniqKey="Li Y" first="Yanmei" last="Li">Yanmei Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Chuanyu" sort="Ma, Chuanyu" uniqKey="Ma C" first="Chuanyu" last="Ma">Chuanyu Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tong, Lixiu" sort="Tong, Lixiu" uniqKey="Tong L" first="Lixiu" last="Tong">Lixiu Tong</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Feili" sort="Du, Feili" uniqKey="Du F" first="Feili" last="Du">Feili Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Mingliang" sort="Xu, Mingliang" uniqKey="Xu M" first="Mingliang" last="Xu">Mingliang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31961059</idno>
<idno type="pmid">31961059</idno>
<idno type="doi">10.1111/jipb.12911</idno>
<idno type="wicri:Area/Main/Corpus">000242</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000242</idno>
<idno type="wicri:Area/Main/Curation">000242</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000242</idno>
<idno type="wicri:Area/Main/Exploration">000242</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize.</title>
<author>
<name sortKey="Yao, Lishan" sort="Yao, Lishan" uniqKey="Yao L" first="Lishan" last="Yao">Lishan Yao</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Yanmei" sort="Li, Yanmei" uniqKey="Li Y" first="Yanmei" last="Li">Yanmei Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Chuanyu" sort="Ma, Chuanyu" uniqKey="Ma C" first="Chuanyu" last="Ma">Chuanyu Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tong, Lixiu" sort="Tong, Lixiu" uniqKey="Tong L" first="Lixiu" last="Tong">Lixiu Tong</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, Feili" sort="Du, Feili" uniqKey="Du F" first="Feili" last="Du">Feili Du</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xu, Mingliang" sort="Xu, Mingliang" uniqKey="Xu M" first="Mingliang" last="Xu">Mingliang Xu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193</wicri:regionArea>
<wicri:noRegion>100193</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of integrative plant biology</title>
<idno type="eISSN">1744-7909</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fusarium ear rot, caused by Fusarium verticillioides, is a devastating fungal disease in maize that reduces yield and quality; moreover, F. verticillioides produces fumonisin mycotoxins, which pose serious threats to human and animal health. Here, we performed a genome-wide association study (GWAS) under three environmental conditions and identified 34 single-nucleotide polymorphisms (SNPs) that were significantly associated with Fusarium ear rot resistance. With reference to the maize B73 genome, 69 genes that overlapped with or were adjacent to the significant SNPs were identified as potential resistance genes to Fusarium ear rot. Comparing transcriptomes of the most resistant and most susceptible lines during the very early response to Fusarium ear rot, we detected many differentially expressed genes enriched for pathways related to plant immune responses, such as plant hormone signal transduction, phenylpropanoid biosynthesis, and cytochrome P450 metabolism. More than one-fourth of the potential resistance genes detected in the GWAS were differentially expressed in the transcriptome analysis, which allowed us to predict numbers of candidate genes for maize resistance to ear rot, including genes related to plant hormones, a MAP kinase, a PR5-like receptor kinase, and heat shock proteins. We propose that maize plants initiate early immune responses to Fusarium ear rot mainly by regulating the growth-defense balance and promoting biosynthesis of defense compounds.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31961059</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1744-7909</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>62</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of integrative plant biology</Title>
<ISOAbbreviation>J Integr Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize.</ArticleTitle>
<Pagination>
<MedlinePgn>1535-1551</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/jipb.12911</ELocationID>
<Abstract>
<AbstractText>Fusarium ear rot, caused by Fusarium verticillioides, is a devastating fungal disease in maize that reduces yield and quality; moreover, F. verticillioides produces fumonisin mycotoxins, which pose serious threats to human and animal health. Here, we performed a genome-wide association study (GWAS) under three environmental conditions and identified 34 single-nucleotide polymorphisms (SNPs) that were significantly associated with Fusarium ear rot resistance. With reference to the maize B73 genome, 69 genes that overlapped with or were adjacent to the significant SNPs were identified as potential resistance genes to Fusarium ear rot. Comparing transcriptomes of the most resistant and most susceptible lines during the very early response to Fusarium ear rot, we detected many differentially expressed genes enriched for pathways related to plant immune responses, such as plant hormone signal transduction, phenylpropanoid biosynthesis, and cytochrome P450 metabolism. More than one-fourth of the potential resistance genes detected in the GWAS were differentially expressed in the transcriptome analysis, which allowed us to predict numbers of candidate genes for maize resistance to ear rot, including genes related to plant hormones, a MAP kinase, a PR5-like receptor kinase, and heat shock proteins. We propose that maize plants initiate early immune responses to Fusarium ear rot mainly by regulating the growth-defense balance and promoting biosynthesis of defense compounds.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yao</LastName>
<ForeName>Lishan</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yanmei</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Chuanyu</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Lixiu</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Feili</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Mingliang</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2018ZX08009-04B</GrantID>
<Agency>Ministry of Agriculture of China</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>China (Republic : 1949- )</Country>
<MedlineTA>J Integr Plant Biol</MedlineTA>
<NlmUniqueID>101250502</NlmUniqueID>
<ISSNLinking>1672-9072</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31961059</ArticleId>
<ArticleId IdType="doi">10.1111/jipb.12911</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Alessandra L, Luca P, Adriano M (2010) Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection. J Plant Physiol 167: 1398-1406</Citation>
</Reference>
<Reference>
<Citation>Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc B 57: 289-300</Citation>
</Reference>
<Reference>
<Citation>Boling MB, Grogan CO (1965) Gent acton affecting host resistance to Fusarium ear rot of maize. Crop Sci 4: 305-307</Citation>
</Reference>
<Reference>
<Citation>Campos-Bermudez VA, Fauguel CM, Tronconi MA, Paula C, Presello DA, Andreo CS (2013) Transcriptional and metabolic changes associated to the infection by Fusarium verticillioides in maize inbreds with contrasting ear rot resistance. PLoS ONE 8: 61580</Citation>
</Reference>
<Reference>
<Citation>Casado-Vela J, Sellés S, Martínez RB (2010) Proteomic analysis of tobacco mosaic virus-infected tomato (Lycopersicon esculentum Mill.) fruits and detection of viral coat protein. Proteomics 6: S196-S206</Citation>
</Reference>
<Reference>
<Citation>Chen JF, Ding JQ, Li HM, Li ZM, Sun XD, Li JJ, Wang RX, Dai XD, Dong HF, Song WB, Chen W, Xia ZL, Wu JY (2012) Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed 30: 1649-1656</Citation>
</Reference>
<Reference>
<Citation>Chen JF, Ding JQ, Sun XD, Wang AD, Liu CY, Wang RX, Li JJ, Wang YX, Ma JL, Han YN, Wu JY (2009) Study on the inhibition of fungicides to the major pathogens of maize ear rot. J Henan Agric Sci 81-83</Citation>
</Reference>
<Reference>
<Citation>Chen JF, Shrestha R, Ding JQ, Zheng HJ, Mu CH, Wu JY, Mahuku G (2016) Genome-wide association study and QTL mapping reveal genomic loci associated with Fusarium ear rot resistance in tropical maize germplasm. G3-Genes Genom Genet 6: 3803-3815</Citation>
</Reference>
<Reference>
<Citation>Chen W, Wu JY, Yuan HX (2002) Identification of resistance on maize germplasm to maize ear rot. J Maize Sci 10: 59-60</Citation>
</Reference>
<Reference>
<Citation>Chen YS, Chao Q, Tan GQ, Zhao J, Zhang MJ, Ji Q (2008) Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet 117: 1241-1252</Citation>
</Reference>
<Reference>
<Citation>Chu FS, Li GY (1994) Simultaneous occurrence of fumonisin b1 and other mycotoxins in moldy corn collected from the people's republic of china in regions with high incidences of esophageal cancer. Appl Environ Microbiol 60: 847-852</Citation>
</Reference>
<Reference>
<Citation>Clements MJ, White DG (2004) Identifying sources of resistance to aflatoxin and fumonisin contamination in corn grain. J Toxicol-Toxin Rev 23: 381-396</Citation>
</Reference>
<Reference>
<Citation>Ding JQ, Wang XM, Chander S, Yan JB, Li JS (2008) QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed 22: 395-403</Citation>
</Reference>
<Reference>
<Citation>Duan CX, Wang XM, Song FJ, Sun SL, Zhou DN, Zhu ZD (2015) Advances in research on maize resistance to ear rot. Sci Agric Sin 84: 2152-2164</Citation>
</Reference>
<Reference>
<Citation>Grau CR, Radke VL, Gillespie FL (1982) Resistance of soybean cultivars to Sclerotinia sclerotiorum. Plant Dis 66: 506-508</Citation>
</Reference>
<Reference>
<Citation>Hegeman CE, Good LL, Grabau EA (2001) Expression of d-myo-inositol-3phosphate synthase in soybean. Implications for phytic acid biosynthesis1. Plant Physiol 125: 1941-1948</Citation>
</Reference>
<Reference>
<Citation>Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83a1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15: 179-194</Citation>
</Reference>
<Reference>
<Citation>Ju M, Zhou ZJ, Mu C, Zhang XC, Gao JY, Liang YK, Chen JF, Wu YB, Li XP, Wang SW, Wen JJ, Yang LM, Wu JY (2017) Dissecting the genetic architecture of Fusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Sci Rep 7: 46446</Citation>
</Reference>
<Reference>
<Citation>Kebede AZ, Woldemariam T, Reid LM, Harris LJ (2016) Quantitative trait loci mapping for Gibberella ear rot resistance and associated agronomic traits using genotyping-by-sequencing in maize. Theor Appl Genet 129: 17-29</Citation>
</Reference>
<Reference>
<Citation>Koo AJ, Cooke TF, Howe GA (2011) Cytochrome P450 CYP94B3 mediates catabolism and inactivation of the plant hormone Jasmonoyl-L-isoleucine. Proc Natl Acad Sci USA 108: 9298-9303</Citation>
</Reference>
<Reference>
<Citation>Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazímalová E (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10: 249</Citation>
</Reference>
<Reference>
<Citation>Lanubile A, Ferrarini A, Maschietto V (2014) Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics 15: 710</Citation>
</Reference>
<Reference>
<Citation>Li H, Peng ZY, Yang XH, Wang WD, Fu JJ, Wang JH, Han YJ, Chai YC, Guo TT, Yang N, Liu J, Warburton ML, Cheng YB, Hao XM, Zhang P, Zhao JY, Liu YJ, Wang GY, Li J, Yan J (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45: 43-50</Citation>
</Reference>
<Reference>
<Citation>Li MS, Yan XF (2014) Jasmonic acid signaling in plants and its biological functions in relation to environment. Acta Ecol Sin 34: 6779-6788</Citation>
</Reference>
<Reference>
<Citation>Li XP, Dong HY, Tao Y, Jiang Y, Wang LJ, Liu C, Liu YJ (2007) Survey of maize ear rot. Rain Fed Crops 27: 130-132</Citation>
</Reference>
<Reference>
<Citation>Li ZM, Ding JQ, Wang RX, Chen JF, Sun XD, Chen W, Song WB, Dong HF, Dai XD, Xia ZL, Wu JY (2011) A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet 52: 403-406</Citation>
</Reference>
<Reference>
<Citation>Liu LL, Han MM, Wang QK, Wang ZH, Di H (2016) Density-increasing of genetic map and QTL Analysis for maize head smut resistance based on Ji846/Ye3189 RIL population. J Maize Sci 24: 20-25</Citation>
</Reference>
<Reference>
<Citation>Liu RF, Liu Q, Zhang FY, Yuan XN, Jia GX (2015) The analysis of differential expression genes for rose early responding to black-spot disease. Acta Hortic Sin 42: 731-740</Citation>
</Reference>
<Reference>
<Citation>Logrieco A, Mulè G, Moretti A, Bottalico A (2002) Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur J Plant Pathol 108: 597-609</Citation>
</Reference>
<Reference>
<Citation>Ma J, Wang YB, Liu XF, Li M, Gong X, Qi X, Jiang M (2014) SNP gene chip analysis of near-isogenic lines to north corn leaf blight. J Maize Sci 22: 153-158</Citation>
</Reference>
<Reference>
<Citation>Maschietto V, Colombi C, Pirona R, Pea G, Strozzi F, Marocco A, Rossini L, Lanubile A (2017) QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biol 17: 20</Citation>
</Reference>
<Reference>
<Citation>Maschietto V, Lanubile A, Leonardis SD, Marocco A, Paciolla C (2016) Constitutive expression of pathogenesis-related proteins and antioxidant enzyme activities triggers maize resistance towards Fusarium verticillioides. J Plant Physiol 200: 53-61</Citation>
</Reference>
<Reference>
<Citation>Maschietto V, Marocco A, Malachova A, Lanubile A (2015) Resistance to Fusarium verticillioides and fumonisin accumulation in maize inbred lines involves an earlier and enhanced expression of lipoxygenase (LOX) genes. J Plant Physiol 188: 9-18</Citation>
</Reference>
<Reference>
<Citation>Mesterházy Á, Lemmens M, Reid LM (2012) Breeding for resistance to ear rots caused by Fusarium spp. in maize-a review. Plant Breed 131: 1-19</Citation>
</Reference>
<Reference>
<Citation>Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH, Rothman KJ, Hendricks KA (2006) Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ Health Perspect 114: 237-241</Citation>
</Reference>
<Reference>
<Citation>Munkvold GP (2003) Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur J Plant Pathol 109: 705-713</Citation>
</Reference>
<Reference>
<Citation>Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A, Shinozaki K (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55: 327-342</Citation>
</Reference>
<Reference>
<Citation>Norhayati A, Sardjono, Yamashita A, Yoshizawa T (1998) Natural co-occurrence of aflatoxins and fusavium mycotoxins (fumonisins, deoxynivalenol, nivalenol and zearalenone) in corn from Indonesia. Food Addit Contam 15: 377-384</Citation>
</Reference>
<Reference>
<Citation>Pan HK, Zhang LX (1987) Studies on kernel and ear rot of corn. Acta Agric Boreali 2: 86-89</Citation>
</Reference>
<Reference>
<Citation>Pè ME, Gianfranceschi L, Taramino G, Tarchini R, Angelini P, Dani M, Binelli G (1993) Mapping quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Mol Gen Genet 241: 11-16</Citation>
</Reference>
<Reference>
<Citation>Pérez BD, Jeffers DP, González de León D, Khairallah MM, Cortés CM, Velázquez CG, Azpíroz S, Srinivasan G (2001) QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, Mexico. Agrociencia 35: 181-196</Citation>
</Reference>
<Reference>
<Citation>Ren JP (1993) Preliminary study in maize ear rot. Maize Sci 1: 75-79</Citation>
</Reference>
<Reference>
<Citation>Rheeder JP (1992) Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 82: 353-357</Citation>
</Reference>
<Reference>
<Citation>Robertson LA, Kleinschmidt CE, White DG, Payne GA, Maragos CM, Holland JB (2006) QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Sci 46: 1734-1744</Citation>
</Reference>
<Reference>
<Citation>Santiago R, Cao A, Malvar RA, Reid LM, Butrón Ana (2013) Assessment of corn resistance to fumonisin accumulation in a broad collection of inbred lines. Field Crops Res 149: 193-202</Citation>
</Reference>
<Reference>
<Citation>Takemoto D, Hayashi M, Doke N, Nishimura M, Kawakita K (1999) Molecular cloning of a defense-response-related cytochrome P450 gene from tobacco. Plant Cell Physiol 40: 1232-1242</Citation>
</Reference>
<Reference>
<Citation>Ullstrup AJ (1946) An undescribed ear rot of corn caused by Physalospora zeae. Phytopathology 36: 201-212</Citation>
</Reference>
<Reference>
<Citation>Van Egmond HP, Schothorst RC, Jonker MA (2007) Regulations relating to mycotoxins in food: Perspectives in a global and European context. Anal Bioanal Chem 389: 147-157</Citation>
</Reference>
<Reference>
<Citation>Wang FG, Liu XD, Wang ZH, Zhang SH, Li XH, Yuan LX, Han XQ, Li MS (2003) Preliminary studies on QTL mapping of resistance to sugarcane mosaic virus in maize. Acta Agron Sin 29: 69-74</Citation>
</Reference>
<Reference>
<Citation>Wang HW, Li HJ, Zhu ZD, Wu XF, Wang XM (2010) Differential analysis of Ht 2 -related genes in incompatible reaction between Huangzaosi Ht2 and Exserohilum turcicum race 1. Acta Phytopathol Sin 40: 135-143</Citation>
</Reference>
<Reference>
<Citation>Xi ZY, Zhang SH, Li XH, Xie CX, Li MS, Hao ZF, Zhang DG, Liang YH, Bai L, Zhang SH (2008) Identification and mapping of a new resistant gene to sugarcane mosaic virus in maize. Acta Agron Sin 34: 1494-1499</Citation>
</Reference>
<Reference>
<Citation>Yang N, Lu YL, Yang XH, Huang J, Zhou Y, Farhan A, Wen WW, Liu J, Li JS, Yan JB (2014) Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet 10: e1004573</Citation>
</Reference>
<Reference>
<Citation>Yang XH, Gao SB, Xu ST, Zhang ZX, Prasanna BM, Li L, Li JS, Yan JB (2011) Characterization of a global germplasm collection and its potential utilization for analysis of complex quantitative traits in maize. Mol Breed 28: 511-526</Citation>
</Reference>
<Reference>
<Citation>Ye JR, Zhong T, Zhang DF, Ma CY, Wang LN, Yao LS, Zhang QQ, Zhu M, Xu ML (2018) The Auxin-regulated protein ZmAuxRP1 coordinates the balance between root growth and stalk rot disease resistance in maize. Mol Plant 10: 1-14</Citation>
</Reference>
<Reference>
<Citation>Yuan GS, Zhang ZM, Xiang K, Shen YO, Du J, Li L, Zhao MJ, Pan GT (2013) Different gene expressions of resistant and susceptible maize inbreds in response to Fusarium verticillioides infection. Plant Mol Biol Rep 31: 925-935</Citation>
</Reference>
<Reference>
<Citation>Zila CT, Ogut F, Romay MC, Gardner CA, Holland JB (2014) Genome-wide association study of Fusarium ear rot disease in the USA maize inbred line collection. BMC Plant Biol 14: 1584</Citation>
</Reference>
<Reference>
<Citation>Zila CT, Samayoa LF, Santiago R, Butron A, Holland JB (2013) A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3-Genes Genom Genet 3: 2095-2104</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Yao, Lishan" sort="Yao, Lishan" uniqKey="Yao L" first="Lishan" last="Yao">Lishan Yao</name>
</noRegion>
<name sortKey="Du, Feili" sort="Du, Feili" uniqKey="Du F" first="Feili" last="Du">Feili Du</name>
<name sortKey="Li, Yanmei" sort="Li, Yanmei" uniqKey="Li Y" first="Yanmei" last="Li">Yanmei Li</name>
<name sortKey="Ma, Chuanyu" sort="Ma, Chuanyu" uniqKey="Ma C" first="Chuanyu" last="Ma">Chuanyu Ma</name>
<name sortKey="Tong, Lixiu" sort="Tong, Lixiu" uniqKey="Tong L" first="Lixiu" last="Tong">Lixiu Tong</name>
<name sortKey="Xu, Mingliang" sort="Xu, Mingliang" uniqKey="Xu M" first="Mingliang" last="Xu">Mingliang Xu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000192 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000192 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31961059
   |texte=   Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31961059" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020